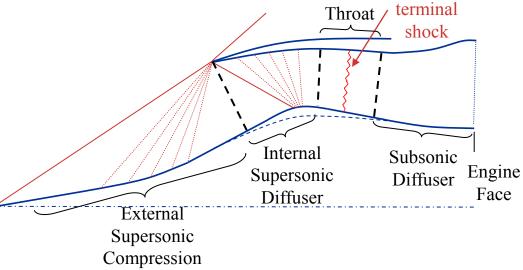
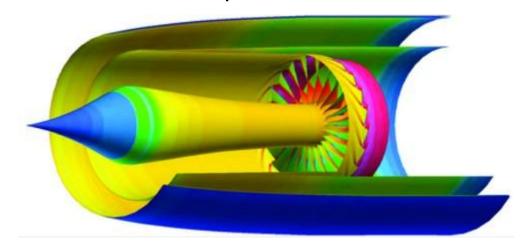
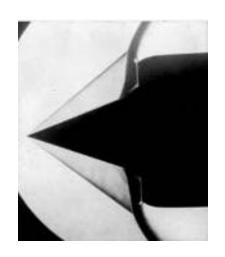
Modeling of Concept Propulsion System AeroPropulsoServoElasticity Fundamental Aeronautics – Supersonics Project George Kopasakis NASA Glenn Research Center Cleveland, Ohio Propulsion Control and Diagnostics (PCD) Workshop Cleveland OH, Feb. 28 – March 1, 2012

Outline


- Supersonic Inlet modeling
 - -- Mixed Compression Inlet
 - -- External Compression Inlet
- Parallel Flow Path Modeling
 - -- Parallel Compressor Modeling
- Engine Control Schedules
 - -- Compressor Schedule
 - -- Exit Nozzle Area Schedule
- Nozzle Modeling
- Variable Cycle Engine (VCE) Modeling
- Concluding Remarks/Future

Supersonic Inlets Modeling




- Started with Mixed Compression Supersonic inlets

- Now focusing on external compression axisymmetric Inlets
 - -- Better overall performance for Mach 1.8 or less

External Compression Modeling

- Isentropic compressible flow relations to model a system of oblique shocks (no dynamics assuming external dynamics are significantly faster than internal)

$$\tan \theta = 2 \cot \beta \frac{M_{1N}^2 - 1}{M_1^2 (\gamma + \cos 2\beta) + 2}$$

$$M_{1N} = M_1 \sin \beta$$

$$\frac{P_2}{P_1} = 1 + \frac{2\gamma}{\gamma + 1} \left(M_{1N}^2 - 1 \right)$$

$$\frac{T_2}{T_1} = \frac{P_2}{P_1} \frac{(\gamma - 1)M_{1N}^2 - 2}{(\gamma + 1)M_{1N}^2}$$

$$M_2 = \frac{1}{\sin(\beta - \theta)} \sqrt{\frac{1 + \frac{\gamma - 1}{2} M_{1N}^2}{\gamma M_{1N}^2 - \frac{\gamma - 1}{2}}}$$

- Sufficient discretization of centerbody angle ($\Delta\theta$) when cowl lip conditions are not changing
- Shocks focusing at the cowl lip also verifies inlet geometry for designed condition

4

Internal Compression Modeling

Supersonic & Subsonic Diffusers

Internal supersonic and subsonic compression – Quasi 1D
 CFD based on compressible Euler

Continuity of

Mass

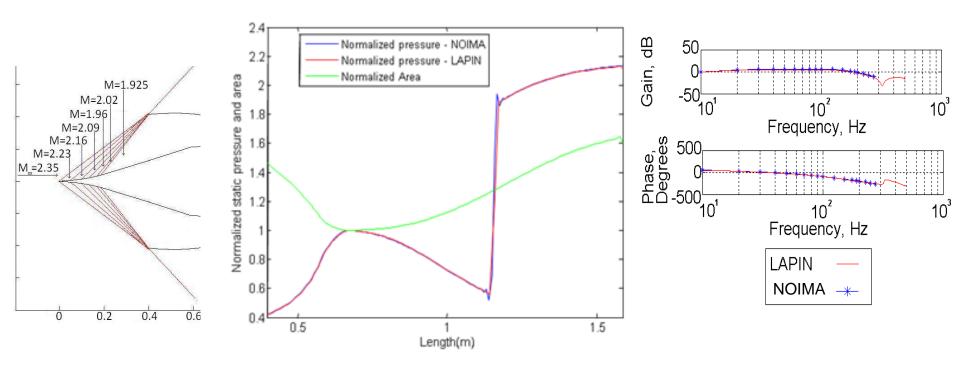
$$\frac{\partial \rho_s}{\partial t} = -\frac{1}{A} \frac{\partial (\rho_s A v)}{\partial x} - \frac{\rho_s}{A} \frac{\partial A}{\partial t}$$

Momentum

$$\frac{\partial}{\partial t}(\rho_s v) = -\frac{1}{A} \frac{\partial}{\partial x} \left[(P_s + \rho_s v^2) A \right] + \frac{1}{A} \left(P_s \frac{\partial A}{\partial x} - \rho_s v \frac{\partial A}{\partial t} \right)$$

Energy

$$\frac{\partial}{\partial t} \left[\left(\frac{P_s}{\gamma - 1} + \frac{\rho_s v^2}{2} \right) \right] = -\frac{1}{A} \frac{\partial}{\partial x} \left[A \left(\frac{\gamma P_s v}{\gamma - 1} + \frac{\rho_s v^3}{2} \right) \right] - \frac{1}{A} \left(\frac{\gamma P_s}{\gamma - 1} + \frac{\rho_s v^2}{2} \right) \frac{\partial A}{\partial t}$$


Overall CFD Equation

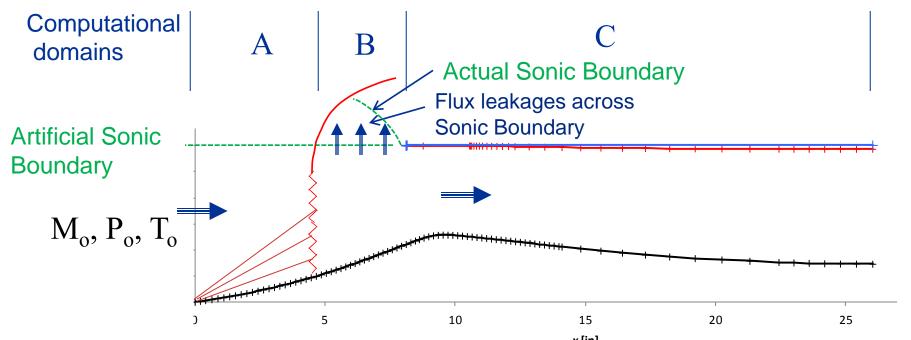
$$\frac{\partial}{\partial t} (W_{j,n}) = -\left(\frac{A_{n+1}F_{j,n+1} - A_{n-1}F_{j,n-1}}{2\Delta x A_n}\right) + \frac{S_{j,n}}{A_n} + S_{\nu} \left[\frac{\left(|v_n| + a_n\right)\left(A_{n+1}W_{j,n+1} - A_nW_{j,n}\right) - \left(|v_{n-1}| + a_{n-1}\right)\left(A_nW_{j,n} - A_{n-1}W_{j,n-1}\right)}{\Delta x A_n}\right]$$

Mixed Compression Inlets Modeling - Results

- New model (NOIMA) verified against legacy code named LAPIN, which was verified with testing
 - -- LAPIN written in FORTRAN (~ 80 routines), based on method of characteristics

 New model can be used for controls design to increase performance and for propulsion and APSE integration

External Compression Inlet Modeling - Approach



Computational Domain

- A. 1-D compressible flow cells w/ dynamics and averaging flows at shock boundary
- B. Quasi 1-D CFD compressible flow cells w/ leakage fluxes estimation
- C. Quasi 1-D CFD compressible flow cells

A-B. Moving computational domains

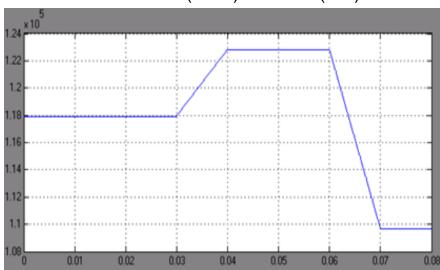
Scaled Gulfstream Inlet Geometry - tested at GRC Dec. 2010

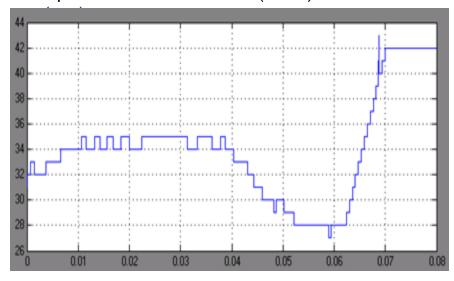
External Compression Inlet Modeling – Challenges

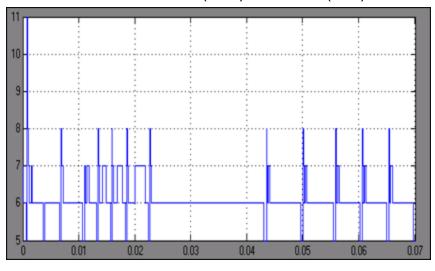
Challenges

- Developing generalized formulations for conservation flux leakages across sonic boundary – <u>Method hasn't worked yet</u>
- Sensing the shock position to switch between compressible flow cells and quasi 1D CFD cells – Moving Domain

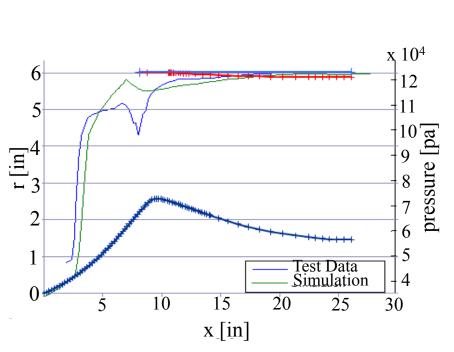
 Determined mass flow leakage based on test data for various engine face back pressures to calculate leakage fluxes – <u>Approach worked but is not generalized</u>

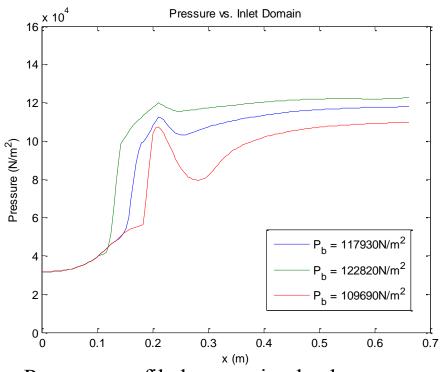

 Remaining issue for inlet dynamics Conical compressible flow field inherently 2D and 3D for pitch variations


Results – Ramping the Back Pressure


Back Pressure (N/m²) vs. Time (sec)

Upstream Shock Position (cell #) vs. Time



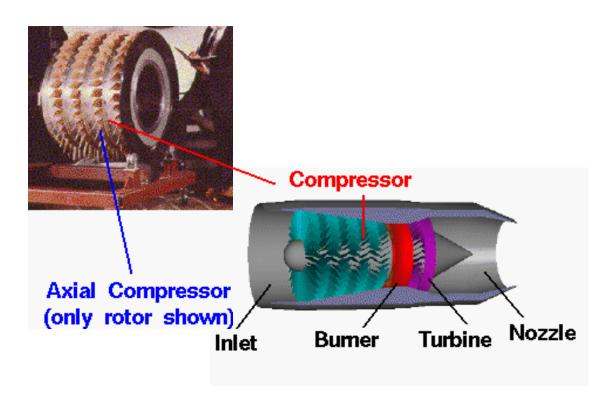

Shock Thickness (Cell) vs. Time (sec)

External Compression Inlet Results

Comparing test and Simulation Results

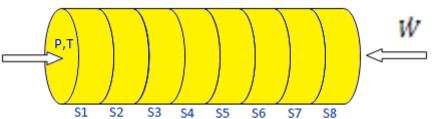
Pressure profile by ramping back pressure

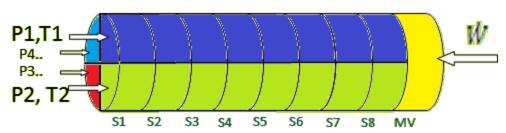
Difference In Shock Position


Back Pressure		Simulation Shock Position
(N/m²)	(Cell)	(Cell)
109690	41	42
117930	32	34-35
122820	26	28

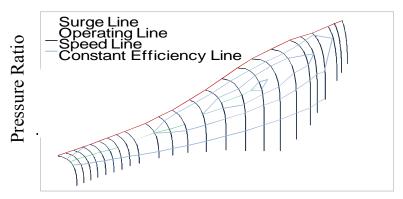
Parallel Compressor Modeling

Objective


- Develop parallel flow path models of propulsion components to study effect of distortion on propulsion system dynamics and APSE
- First step in the process: develop compressor model with parallel flow paths


Overview

V


- New model derived in cylindrical coordinates - Euler
- Allows modeling of disturbance from changing flight conditions (pitch, yaw, roll, etc)
- Inlet conditions of Pressure,
 Temperature & outlet
 conditions of mass flow rate
- Path ratio of \$\beta_i\$- adjusting mass flow rate of stage maps by path ratio

Original model
Stage-by-stage, single flow path

New Model - Multiple Interacting Flow Paths

Corrected Mass Flow Rate

Parallel Compressor Modeling Approach

Conservation Dynamics in 2D Cylindrical Coordinates

Equations were derived in cylindrical coordinates for compressible & inviscid flow, assuming flow properties do not vary in the radial direction

Conservation Equations $\frac{\partial}{\partial t}(W_j) = -a_{xj} \frac{\partial}{\partial x}(F_{xj}) - a_{\varphi j} \frac{\partial}{\partial \varphi}(F_{\varphi j}) + S_j$

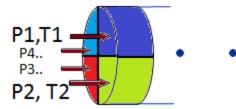
j	Wj	Fxj	Г фј	Sj	$\mathbf{a}_{\mathbf{x}\mathbf{j}}$	$a_{\phi j}$
1	$ ho_s$	$\rho_s u$	$\rho_s w$	0	1	1
2	$\rho_s u$	$\rho_s u$	$\rho_s u$	$-\frac{\partial P_s}{\partial x}$	и	$\frac{w}{r}$
3	$\rho_s w$	$\rho_s w$	$ ho_s w$	$-rac{1}{r}rac{\partial P_s}{\partial arphi}$	и	$\frac{w}{r}$
4	$\frac{P_s}{\gamma - 1} + \frac{\rho_s V^2}{2}$	$\frac{\gamma P_{s} u}{\gamma - 1} + \frac{\rho_{s} u^{3}}{2}$	$\frac{\gamma P_s w}{\gamma - 1} + \frac{\rho_s w^3}{2}$	0	1	$\frac{1}{r}$

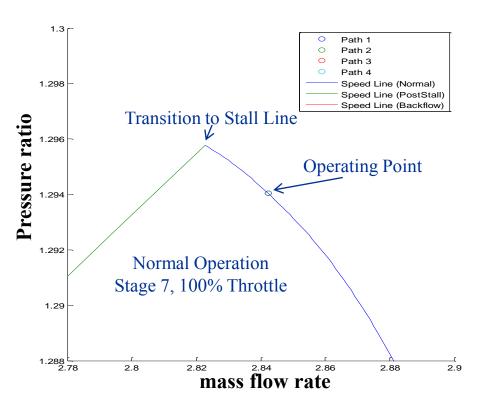
$$\frac{\partial}{\partial t} \left(W_{j,n,m} \right) = -a_{xj,n,m} \left(\frac{F_{xj,n+1,m} - F_{xj,n,m}}{\Delta x} \right) - a_{\varphi j,n,m} \left(\frac{F_{\varphi j,n,m+1} - F_{\varphi j,n,m-1}}{2\Delta \varphi} \right) + \frac{S_{j,n,m-1} - S_{j,n,m+1}}{2s}$$

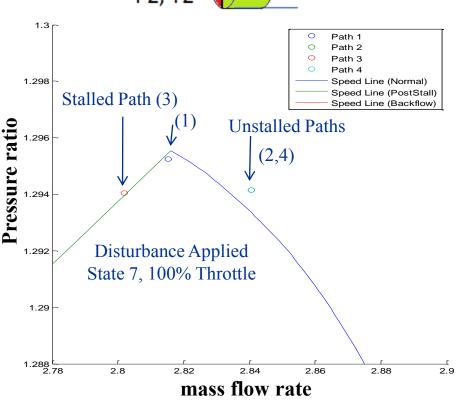
Parallel Compressor Modeling Approach

<u>Mixing volume</u> - weighted average of pressure, temperature outputs from compressor stages

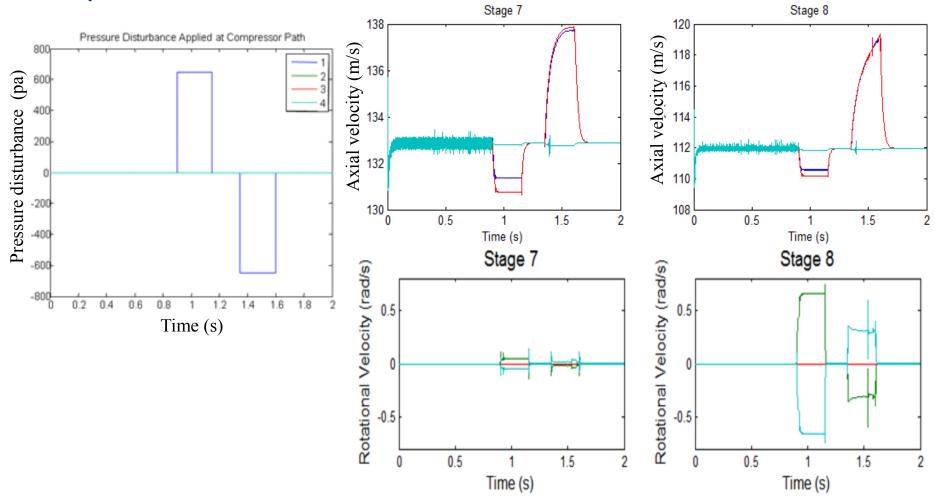
Mixing Volume Equations


Momentum:
$$\frac{\partial}{\partial t} \dot{W}_{mv} = \frac{A_{mv}g}{l_{mv}} \left[\sum_{j=1}^{m} (\beta_j P_{tj,i=n}) - P_{t,mv} \right] \left(1 + \frac{\gamma_{cp} - 1}{2} M_{mv}^2 \right)^{-\frac{\gamma_{cp}}{\gamma_{cp} - 1}}$$

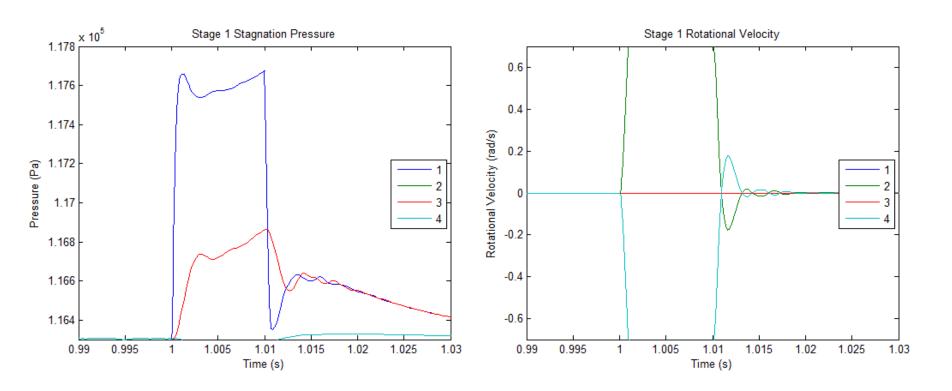

Continuity:
$$\frac{\partial}{\partial t} \rho_{s,mv} = \frac{1}{V_{mv}} (\dot{W}_{mv} - \dot{W}_{cb})$$


Energy:
$$\frac{\partial}{\partial t} \rho_{s,mv} T_{t,mv} = \frac{\gamma_{mv}}{V_{mv}} [\dot{W}_{mv} \sum_{j=1}^{m} \left(\beta_j^2 T_{tj,i=n}\right) - \dot{W}_{cb} T_{t,mv}]$$

Pressure distortion of approximately 0.1% applied to path 1

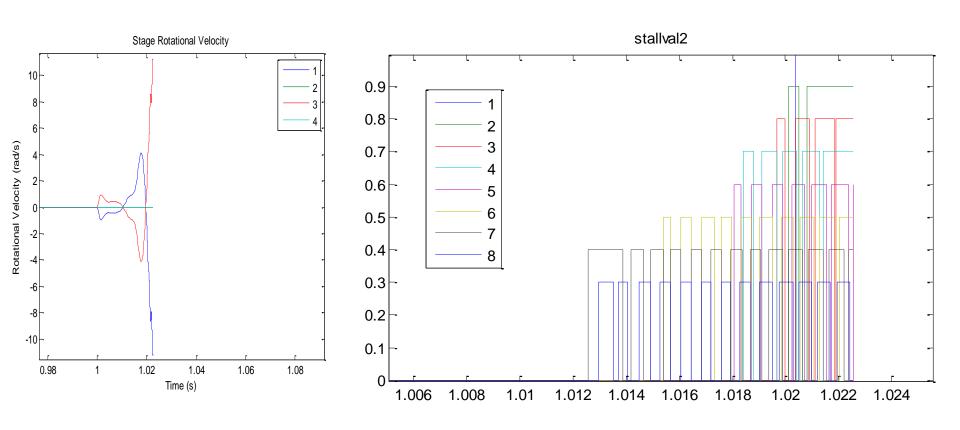


- Pressure disturbance moves Path 1, Path 3 operating points to surge line
- Would experience cascading stall if mass flow rate was not held constant (as with engine)



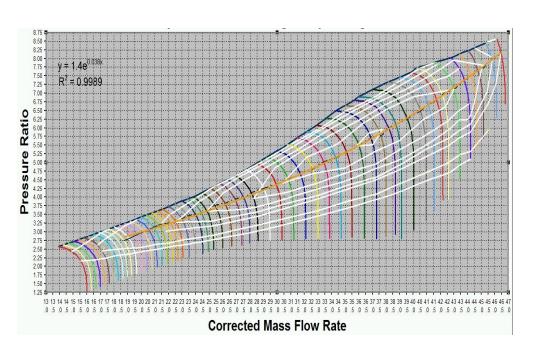
Square wave distortion applied to compressor input, path 1

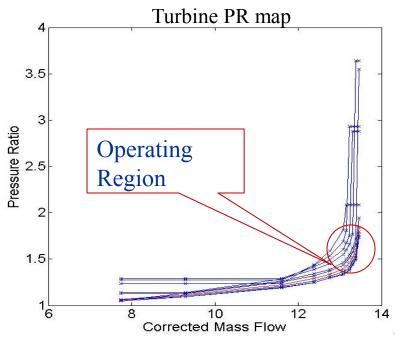
 Pulsating effect of rotational velocity from one stage to the next



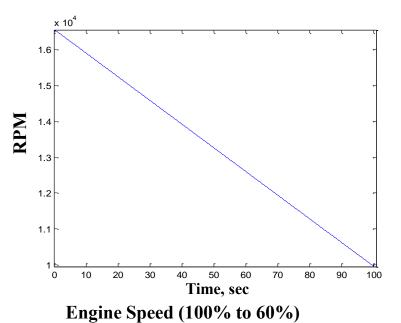
- Distortion with shorter duration applied (larger amplitude about 0.2%)
- Different disturbance frequencies produce different distortion patterns (different frequency domain response)

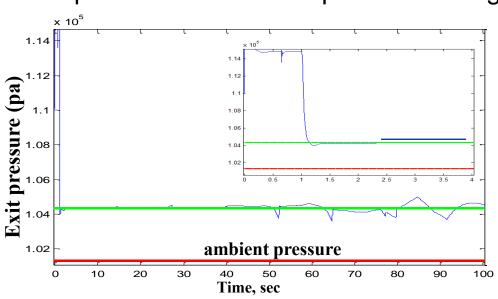
1st Stage at 100% Speed w/ 1300pa (0.16%) Distortion on Sector 2 & 4




Stall Pattern – From Back to Front of Compressor (0 Normal, > 0 Stall)

Engine Operating Schedules


- Prior (2009 WS) compressor operating schedule derivation approach developed for full speed envelope operation – used generic maps
 - -- Developed a bleed schedule Info on Inlet Guide Vane (IGV) not available
 - -- First derived schedule utilizing isolated compressor model
 - -- Integrated w/ engine: could not maintain original operating line & turbine unchoked compressor/turbine performance not exactly matched.
 - -- Corrected by rescaling turbine maps

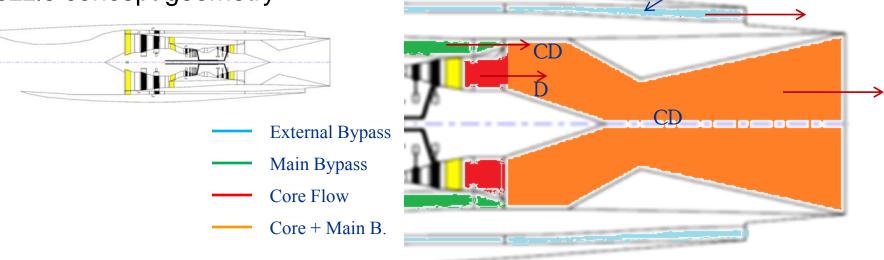


Exit Nozzle Area Schedule

- Developed exit nozzle area schedule approach Objective to fully expand flow at nozzle exit
 - Approach based on PR vs. Cd (flow discharge coefficient) schedule & area limit vs. speed
 - Creates feedback system w/ instabilities Designed Notch filters to stabilize system
 - -- System sensitive to unmatched compressor/turbine required rescaling

Exit Nozzle Pressure as Speed Decreases Starting from 100%

Nozzle Modeling

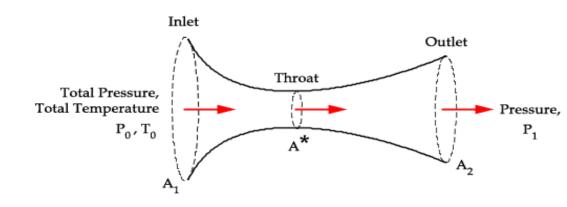


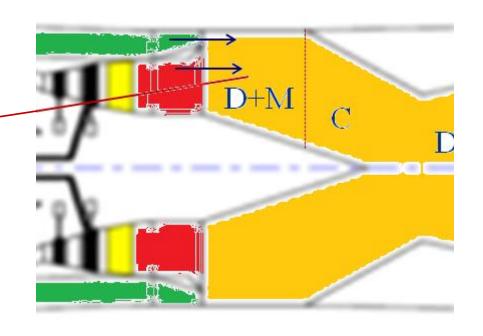
Objective/Approach

- Develop 1D CFD model for exit nozzles for thrust dynamics (before used nozzle lump volume and chocked compressible flow function)
 - -- Chosen method: MacCormack's predictor-corrector technique assuming subsonic-supersonic isentropic nozzle flow
- Step one develop model for generic Convergent-Divergent (CD) nozzle geometry

Step two – develop model for more complex supersonic engine-

nozzle concept geometry




Nozzle Modeling

Converging-Diverging Nozzle

- Throat and Exit Areas used from N+3 engine simulation
- Used simple shape profile actual N+3 nozzle profile not known
- Implemented MacCormack's method - variable area to be implemented in formulations
- Some 2D may need to be done
- For propulsion system exit nozzle area schedules need to be developed

CFD Method- Predictor Step

Predictor

$$\left(\frac{\partial \rho}{\partial t}\right)_{i}^{t} = -\frac{1}{A}\rho_{i}^{t}u_{i}^{t}\left(\frac{A_{i+1} - A_{i}}{\Delta x}\right) - u_{i}^{t}\left(\frac{\rho_{i+1} - \rho_{i}}{\Delta x}\right) - \rho_{i}^{t}\left(\frac{u_{i+1} - u_{i}}{\Delta x}\right)$$

$$\bar{\rho}_i^{t+\Delta t} = \rho_i^t + \left(\frac{\partial \rho}{\partial t}\right)_i^t \Delta t$$

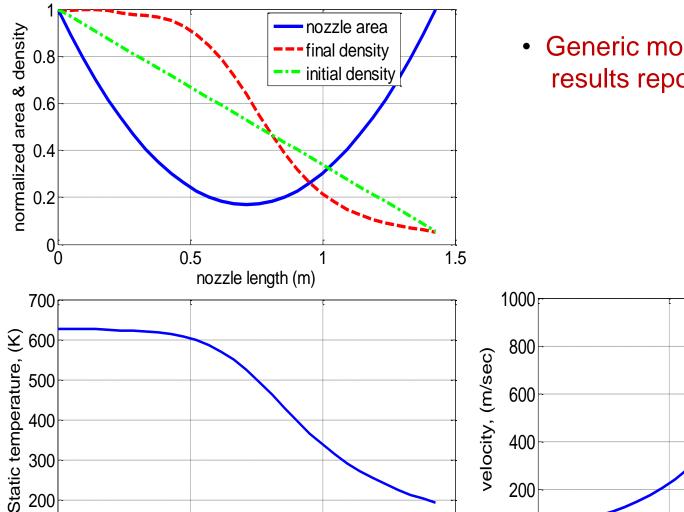
Corrector

$$\overline{\left(\frac{\partial\rho}{\partial t}\right)_{i}^{t+\Delta t}} = -\frac{1}{A}\rho_{i}^{t+\Delta t}u_{i}^{t+\Delta t}\left(\frac{A_{i}-A_{i-1}}{\Delta x}\right) - u_{i}^{t+\Delta t}\left(\frac{\rho_{i}^{t+\Delta t}-\rho_{i-1}^{t}}{\Delta x}\right) - \rho_{i}^{t}\left(\frac{u_{i}^{t+\Delta t}-u_{i-1}^{t}}{\Delta x}\right)$$

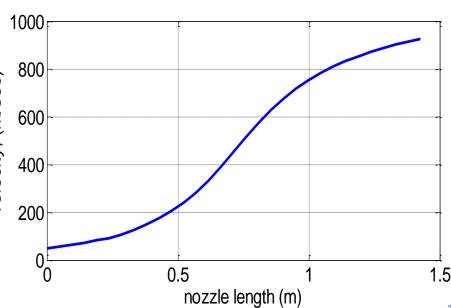
$$\rho_i^{t+\Delta t} = \rho_i^t + \frac{1}{2} \left[\left(\frac{\partial \rho}{\partial t} \right)_i^t + \left(\frac{\overline{\partial \rho}}{\partial t} \right)_i^{t+\Delta t} \right] \Delta t$$

100^L

0.5

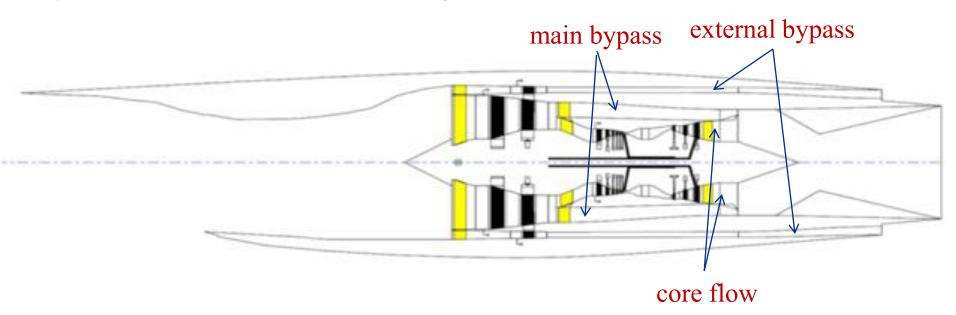

nozzle length (m)

Results

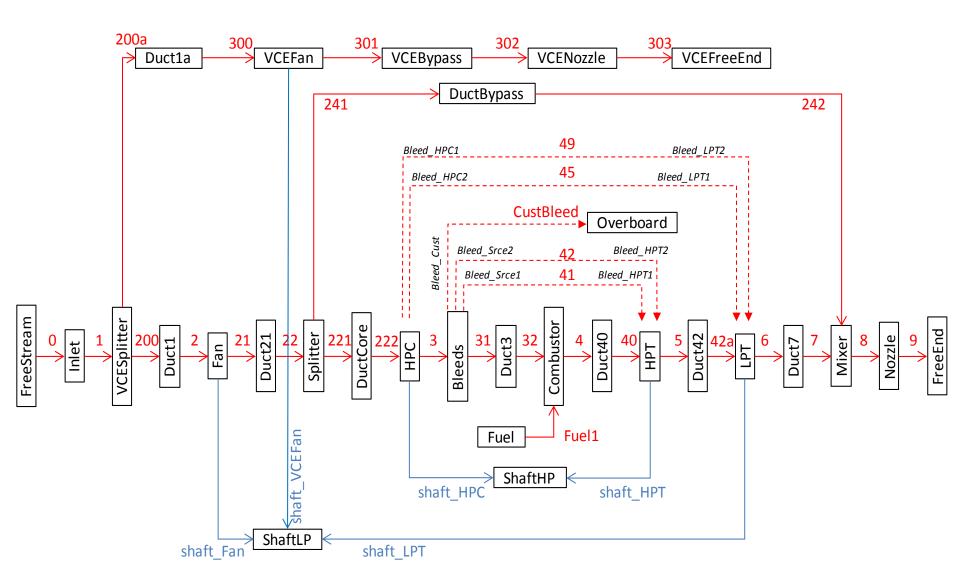


(so far steady state - no freq responses)

1.5


 Generic model verified against results reported in literature

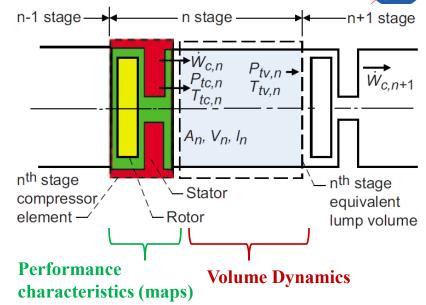
Variable Cycle Engine Model



- Dual Spool variable cycle High bypass at low altitudes to low bypass high altitudes
- Noise abatement for overland flight
 - -- Through external bypass & through nozzle design
- Cycle analysis conducted in NPSS provided geometries and component performance characteristics for dynamic model

NASA

Variable Cycle Engine Model Components

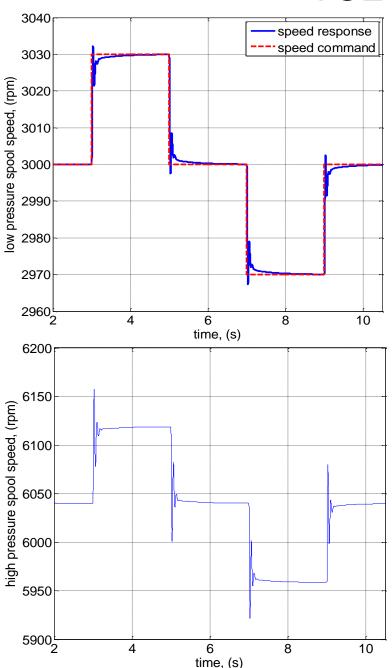


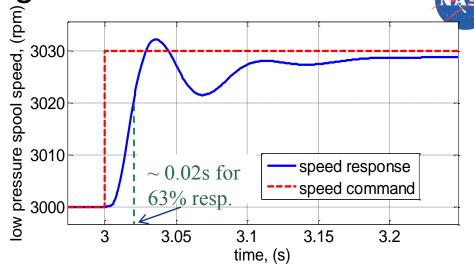
Component Modeling - Roadmap & Approach

Development Roadmap

- Original component models developed based on J85-13 engine
- 2. Many of J85-13 component models directly utilized for VCE w/ the appropriate maps and geometries
- 3. Some new component models developed (ducts, mixers, splinters, dual core) **VCE V.1**
- 4. For some components need to develop detailed models like CFD for inlet & nozzles
- 5. Need to develop fully operational engine (control schedules) Methodology developed w/ J85-13
- 6. Parallel flow paths for distortion & boundary layer effects
- Propulsion & ASE integration Interfaces and controls

Continuity of mass, momentum & energy

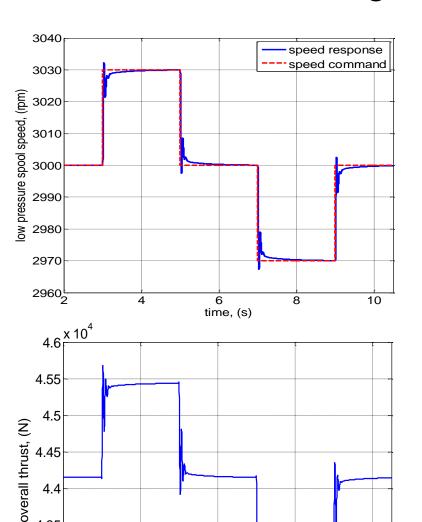

$$\frac{d}{dt}\rho_{\text{sv},n} = \frac{1}{V_n} (\dot{W}_{c,n} - \dot{W}_{c,n+1} - \dot{W}_{b,n})$$


$$\frac{d}{dt}\dot{W}_{c,n} = \frac{A_n g}{l_n} (P_{\text{tc},n} - P_{\text{tv},n}) \left(1 + \frac{\gamma_{\text{cp}} - 1}{2} M_n^2 \right)^{-\gamma_{\text{cp}}/(\gamma_{\text{cp}} - 1)}$$

$$\frac{d}{dt}(\rho_{\text{sv},n}, T_{\text{tv},n}) = \frac{\gamma_{\text{cp}}}{V_n} (T_{\text{tc},n} \dot{W}_{c,n} - T_{\text{tv},n} \dot{W}_{c,n+1} - T_{\text{tv},n} \dot{W}_{b,n})$$

National Aeronautics and Space Administration

VCE Engine Results

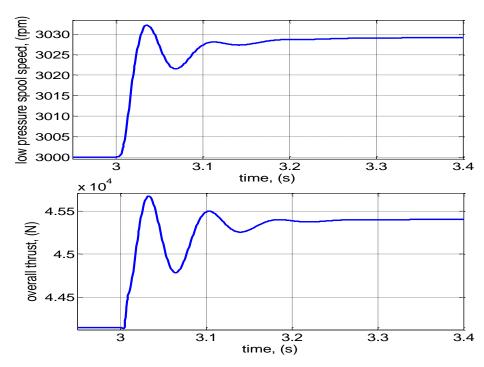


Initial objective is VCE model development

- Control design effort light; hold model together
 - -- But designed for higher bandwidth controls for disturbance attenuation
- Engine has higher response capability of ~ 70 rad/sec on high side (~ 40 rad/sec typically used)
- Potential to use higher response capability to design for better disturbance attenuation, safety margins, and engine efficiency

VCE Engine Speed and Thrust

8


time, (s)

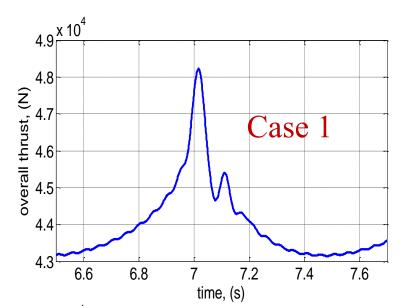
10

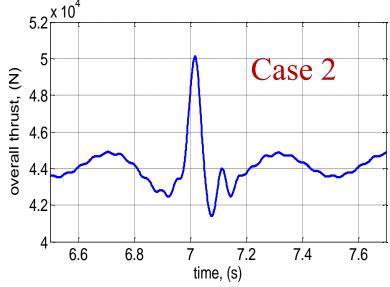
4.35

4.3

4.25^L₂

- Nominal VCE propulsion system thrust 44,100 N or 9,914 lbf
- A 1% change in fan speed causes 2.9% change in thrust

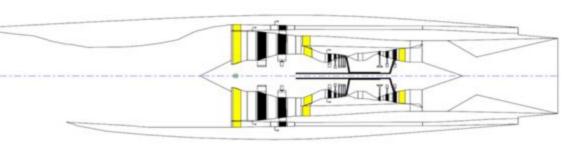

VCE Engine Atmospheric Disturbance and Thrust



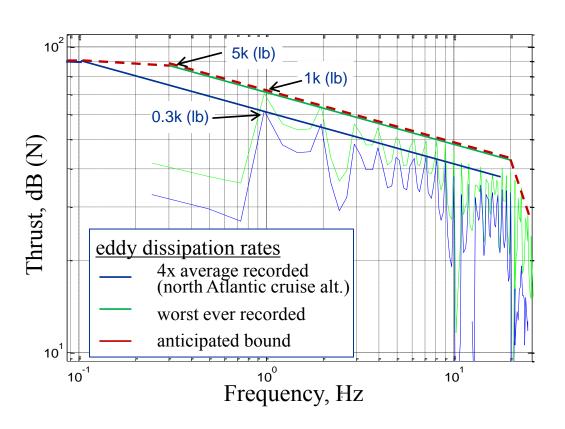
Thrust response w/ Atmospheric Disturbance

With no external compression inlet & no 1D CFD for nozzles

- Case 1; eddy dissipation rate 4x average of North Atlantic cruise altitudes; integral length scale typical (equivalent to atmospheric turbulence patch size of ~ 11 km); max locally dissipating wind speeds 80 mph
 - -- Results in thrust variations up to ~ 5000 N or 1124 lb
- Case 2; eddy dissipation rate worst recorded; integral length scale typical; max dissipating wind speeds 150 mph
 - -- Results in thrust variation up to ~ 9000N or 2024lb



Variable Cycle Propulsion System Studies



Preliminary - Thrust Spectral for Coupling to AeroServoElastic (ASE) Modes

Study based on V1. initial variable cycle engine modeling

- Atmospheric turbulence model w/ eddy dissipation rates & momentary wind gusts up to 180 mph
- Study shows potentially significant trust dynamics to warrant detailed APSE modeling and analysis

Future

- Develop complete integrated propulsion system variable cycle engine dynamic models and control designs
- Develop Integrated APSE system models, integrated vehicle controls, and conduct APSE studies
- Close integration between NPSS and APSE (already started)

Additional Possibilities of this Research

- Integrate w/ NPSS to develop a complete cycle deck design and verification package and controls development platform/Rig
- With gas dynamic model explore higher bandwidth controls to reduce stall margins and improve efficiency and design advanced controls to improve flight safety and operability